Enrollment No:-_

Exam Seat No:-____

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 2TE02AMT1 **Course Name: DIPLOMA** Semester:II

Subject Name: Advanced Mathematics

Date: 18/5/2015 Marks:70 Time:02:30 TO 05:30

Instructions:

- 1) Attempt all Questions of both sections in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

Q - 1 Do as directed.

- (1) The distance between the points (1, 2) and (2, 3) is _____.
- (2) Midpoint of (2, -7) and (8, 3) is _____.
- (3) Slope of the line 2x 3y + 4 = 0 is _____.
- (4) X-intercept of line x 3y + 2 = 0 is _____.
- (5) Centre of the circle $x^2 + y^2 = 9$ is _____.
- (6) $\lim_{x \to 0} \frac{x^2 + 1}{x + 1} = ?$
- (7) $\lim_{x \to 0} \frac{\sin x}{x} = ?$
- (8) Derivative of sinx =____.
- $(9) \quad \frac{d(tanx)}{dx} = \underline{\qquad}.$
- (10) If $y = \log x$ then $\frac{dy}{dx} =$ _____.
- (11) Differentiate $y = e^{2x}$ with respect to x.
- (12) $\int 1 \, dx =$ _____.
- (13) $\int \frac{1}{x} dx =$ _____. (14) $\int e^x dx =$ _____.

Attempt any four from Q-2 to Q-8.

O - 2

- (1) If area of triangle having vertices (3, k), (9, 3), (5, 2) is 7 sq. units, find value of k. (5)
- (2) Find angle between straight lines $\sqrt{3}x y + 1 = 0$ and $x \sqrt{3}y + 2 = 0$. (5)
- (3) If P(7, 5), A(2, 4), B(6, 10) then prove that PA = PB.
- O 3
- (1) Find centre and radius of circle $36x^2 + 36y^2 + 24x 36y 23 = 0$. (5)
- (2) Find equations of tangent and normal to the circle $x^2 + y^2 6x + 10y + 21 = 0$ at point (1, -2).
- (3) Find the equation of line passing through (-1, 2) and (1, -2). (4)

Page 1 of 2

(4)

(5)

Q-4
(1) Prove that
$$\lim_{x \to 3} \frac{\sqrt{x+2} - \sqrt{5}}{\sqrt{x+4} - \sqrt{7}} = \frac{\sqrt{35}}{5}$$
. (5)

(2) Prove that
$$\lim_{x \to \infty} \sqrt{x^2 + 2x} - \sqrt{x^2 - 3} = 1.$$
 (5)

(3) If
$$f(x) = \frac{1}{1+x}$$
 then show that $f(x) + f\left(\frac{1}{x}\right) = 1.$ (4)

(1) Using definition find derivative of
$$e^x$$
. (5)

(2) Find
$$\frac{dy}{dx}$$
 if $y = \frac{1 + \sin x}{1 - \sin x}$. (5)

(3) Find
$$\frac{dy}{dx}$$
 if $y = x^x$. (4)

(1) If
$$y = e^x \sin x$$
 then prove that $\frac{d^2y}{d^2x} - 2\frac{dy}{dx} + 2y = 0.$ (5)

(2) The equation of motion of a particle is $s = t^3 + 3t$, t > 0. Find velocity and acceleration when t = 3 seconds. (5)

(3) Find
$$\frac{dy}{dx}$$
 if $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$ (4)

(1) Evaluate:
$$\int x e^x dx$$
 (5)

(2) Evaluate:
$$\int \frac{(1-3x)^2}{x^3} dx$$
 (5)

(3) Evaluate:
$$\int \frac{2x+3}{x^2+3x-1} dx$$
 (4)

(1) Prove that
$$\int_0^{\frac{\pi}{2}} \frac{\sec x}{\sec x + \csc x} dx = \frac{\pi}{4}$$
 (5)

(2) Find the area of the standard circle
$$x^2 + y^2 = r^2$$
. (5)

(3) Evaluate:
$$\int_0^{10} W \, dx$$
 Where $W = \frac{3}{4} x \left(1 + \frac{x}{10} \right)$ (4)

