\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Code: 2TE02AmT1
Course Name: DIPLOMA
Semester:II

Subject Name: Advanced Mathematics
Date: 18/5/2015
Marks:70
Time:02:30 TO 05:30

Instructions:

1) Attempt all Questions of both sections in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

Q-1 Do as directed.
(1) The distance between the points $(1,2)$ and $(2,3)$ is \qquad .
(2) Midpoint of $(2,-7)$ and $(8,3)$ is \qquad -.
(3) Slope of the line $2 x-3 y+4=0$ is \qquad .
(4) X-intercept of line $x-3 y+2=0$ is \qquad .
(5) Centre of the circle $x^{2}+y^{2}=9$ is \qquad .
(6) $\lim _{x \rightarrow 0} \frac{x^{2}+1}{x+1}=$?
(7) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$?
(8) Derivative of $\sin x=$ \qquad .
(9) $\frac{d(\tan x)}{d x}=$ \qquad —.
(10) If $y=\log x$ then $\frac{d y}{d x}=$ \qquad .
(11) Differentiate $y=e^{2 x}$ with respect to x.
(12) $\int 1 d x=$ \qquad —.
(13) $\int \frac{1}{x} d x=$ \qquad .
(14) $\int e^{x} d x=$ \qquad .

Attempt any four from Q-2 to Q-8.

Q-2
(1) If area of triangle having vertices $(3, k),(9,3),(5,2)$ is 7 sq. units, find value of k.
(2) Find angle between straight lines $\sqrt{3} x-y+1=0$ and $x-\sqrt{3} y+2=0$.
(3) If $\mathrm{P}(7,5), \mathrm{A}(2,4), \mathrm{B}(6,10)$ then prove that $\mathrm{PA}=\mathrm{PB}$.

Q-3
(1) Find centre and radius of circle $36 x^{2}+36 y^{2}+24 x-36 y-23=0$.
(2) Find equations of tangent and normal to the circle $x^{2}+y^{2}-6 x+10 y+21=0$ at point $(1,-2)$.
(3) Find the equation of line passing through $(-1,2)$ and $(1,-2)$.

Q-4
(1) Prove that $\lim _{x \rightarrow 3} \frac{\sqrt{x+2}-\sqrt{5}}{\sqrt{x+4}-\sqrt{7}}=\frac{\sqrt{35}}{5}$.
(2) Prove that $\lim _{x \rightarrow \infty} \sqrt{x^{2}+2 x}-\sqrt{x^{2}-3}=1$.
(3) If $f(x)=\frac{1}{1+x}$ then show that $f(x)+f\left(\frac{1}{x}\right)=1$.

Q-5
(1) Using definition find derivative of e^{x}.
(2) Find $\frac{d y}{d x}$ if $y=\frac{1+\sin x}{1-\sin x}$.
(3) Find $\frac{d y}{d x}$ if $y=x^{x}$.

Q-6
(1) If $y=e^{x} \sin x$ then prove that $\frac{d^{2} y}{d^{2} x}-2 \frac{d y}{d x}+2 y=0$.
(2) The equation of motion of a particle is $s=t^{3}+3 t, t>0$. Find velocity and acceleration when $\mathrm{t}=3$ seconds.
(3) Find $\frac{d y}{d x}$ if $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Q-7
(1) Evaluate: $\int \mathrm{xe}^{\mathrm{x}} \mathrm{dx}$
(2) Evaluate: $\int \frac{(1-3 x)^{2}}{x^{3}} d x$
(3) Evaluate: $\int \frac{2 x+3}{x^{2}+3 x-1} d x$

Q-8
(1) Prove that $\int_{0}^{\frac{\pi}{2}} \frac{\sec x}{\sec x+\operatorname{cosec} x} d x=\frac{\pi}{4}$
(2) Find the area of the standard circle $x^{2}+y^{2}=r^{2}$.
(3) Evaluate: $\int_{0}^{10} W d x$ Where $W=\frac{3}{4} x\left(1+\frac{x}{10}\right)$

